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ABSTRACT
Arousal is essential in understanding human behavior and
decision-making. In this work, we present a multimodal
arousal rating framework that incorporates minimal set of vo-
cal and non-verbal behavior descriptors. The rating frame-
work and fusion techniques are unsupervised in nature to en-
sure that it can be readily-applicable and interpretable. Our
proposed multimodal framework improves correlation to hu-
man judgment from 0.66 (vocal-only) to 0.68 (multimodal);
analysis shows that the supervised fusion framework does
not improve correlation. Lastly, an interesting empirical ev-
idence demonstrates that the signal-based quantification of
arousal achieves a higher agreement with each individual rater
than the agreement among raters themselves. This further
strengthens that machine-based rating is a viable way of mea-
suring subjective humans’ internal states through observing
behavior features objectively.

Index Terms— behavioral signal processing, affective
computing, arousal rating, multimodal signal processing

1. INTRODUCTION

Emotion is a fundamental attribute that governs human’s be-
havioral production/perception and decision-making process.
In the past decade, affective computing [1], a blooming field
in engineering dedicated to compute human emotion from
measurable signals, has made significant progresses along
with the various simultaneous advancement in the human-
machine interface design, e.g., virtual human [2], natural di-
alog interface [3], intelligent tutoring system [4], etc. Fur-
thermore, researchers, from fields in psychology, psychiatry,
and behavioral science, have also long been interested in un-
derstanding the behavioral manifestation of human emotion.
In fact, different psychologically and clinically validated in-
struments (e.g., PANAS [5], BIS/BIA[6]) are often utilized to
assess the internal emotional state of a person in order to aid
the psychologists or clinicians to analyze behaviors or diag-
nose symptoms of interest.

The emerging interdisciplinary field of behavioral signal
processing [7] , which models human behaviors using quanti-
tative computational framework, aims at transforming differ-
ent domain experts’ decision-making process. In this work,
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we concentrate on computing a particular aspect of emotion
description, arousal (a.k.a., activation), i.e., a dimensional
representation of emotional state corresponding to how acti-
vated a person is. For example, angry and excitement are both
high arousal emotional state. Significances in understanding
arousal have also been greatly substantiated in studies across
various domains; for example, interpersonal intimacy is theo-
rized to be a function of arousal [8], infants’ arousal is related
to their mothers’ symptoms of depression [9], the relation-
ship between verbal synchrony and emotional state in couple
therapy [10], etc. .

Previous engineering works on computing arousal from
behavior signals have been concentrated on utilizing super-
vised machine learning techniques (e.g., [3, 11, 12]), . This
approach has resulted in a large body of works and has
demonstrated the effectiveness of training machines to auto-
matically recognize arousal states. Yet, a key missing com-
ponent that many domain experts rely on remains to be a lack
of readily-applicable and interpretable computational frame-
work to quantify affect (arousal) robustly. Recently, Bone et
al. presented a vocal-based affect scoring method using unsu-
pervised (rule-based) technique that incorporates a minimal
set of knowledge-inspired vocal features [13]. That frame-
work was interpretable, scale-continuous (as opposed to usual
discrete n-class arousal states), and operational without much
manual human labeling involved; the framework has further
been demonstrated to achieve cross-domain robustness.

Numerous past studies have demonstrated that different
communicative modalities of behavior all contribute to the
encoding of emotion information (e.g., [14, 15]). Hence, we
extend upon that previous work done by incorporating mul-
timodal behavior features, i.e., nonverbal features including
head movements and facial expressions, into an unsupervised
arousal rating fusion framework. The core ideas behind the
proposed framework in this work are the following:

• Interpretable features
• Scale-continuous scoring
• Unsupervised technique

In this work, we demonstrate that our proposed multimodal
arousal rating framework improves over vocal-only arousal
rating framework. Furthermore, additional experiments show
that the unsupervised fusion technique performs equally-well
compared to the supervised linear regression-based fusion
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technique. Lastly, our experiment further implicates that the
signal-based arousal rating achieves a higher agreement with
each individual subjective arousal rating than the agreement
among evaluators; an initial empirical evidences indicating
that objective unsupervised method for modeling emotion is
potentially viable eliminating the issue around subjectivity.

The rest of the paper is organized as follows: section 2
describes about research methodology, section 3 details the
experimental setup and results, and section 4 concludes with
discussion and future works.

2. RESEARCH METHODOLOGY
2.1. Database
We use the USC IEMOCAP database for the present study
[16]. The USC IEMOCAP was collected for the purpose
of studying different modalities in expressive spoken interac-
tions. The database was recorded in five dyadic sessions, and
each session consists of a different pair of male and female ac-
tors engaging in spoken interactions. The database included a
total of 10 actors with approximate 12 hours of data.

The behavior modalities in the database consist of: high-
definition directional microphone recordings and motion cap-
tured data. During each dialog, 61 markers (two on the head,
53 on the face, and three on each hand) were attached to one
of the interlocutors to record (x, y, z) positions at 60Hz of
each marker. Figure 1 illustrates the placement of the mark-
ers. The markers were then placed onto the other actor and
recorded again with the same set of interaction to complete
a session. The recorded speech data from both subjects were
available for every dialog. The database was manually seg-

Fig. 1. Motion Capture Markers Placement.

mented by humans into utterances. Emotion attributes, e.g.,
activation (i.e., arousal) level (from 1 to 5), were evaluated by
multiple humans at the utterance-level. In this work, out of
the total 10039 available utterances, we utilize a subset, 2401
utterances. This set includes the utterances where markers’
information are available and no overlapping talks occur.

2.2. Multimodal Behavior Features
The two modalities of behavior features that we extract corre-
spond to vocal (prosody) and non-verbal (i.e., head and facial
movements) information. Verbal behavior descriptors are ex-
actly the same set as used Bone et al. i.e., median of pitch,
intensity, and HF500 over an utterance [13].

The behavior manifestation of arousal can be imagined
as the degree of higher or calmer movements. In this work,
we construct the following minimal and interpretable set of
15 non-verbal features (7 from face, 8 from head) from the
(x, y, z) coordinate of the markers per frame, 60 Hz (please
refer to Figure 1 for markers’ naming reference, and Eu-
clidean distance is utilized for all distance calculations):
MOU: Mouth opening quantified as the average distance of

marker MOU1-8 to their center point
LBRO: Left eyebrow movement quantified as the average

distances moved of marker LBRO2-3
RBRO: Right eyebrow movement quantified as the average

distances moved of marker RBRO2-3
LLID: Left eye blinking movement quantified as the dis-

tance of marker LLID’s moved
RLID: Right eye blinking movement quantified as the dis-

tance of marker RLID’s moved
LHD: Left forehead movement quantified as the distance of

marker LHD moved
RHD: Right forehead movement quantified as the distance

of marker RHD moved
Note that the features above are computed by normalizing the
coordinate with respect to the marker TNOSE to ensure that
head movement does not contribute to the calculation. The
rest of the eight features are computed after doing singular
value decomposition (SVD) on the original raw coordinates
to obtain the six degrees of head orientation and movement,
i.e., translation in x, y, z and angles of pitch, roll, yaw [16].
HeadM: Overall head movement quantified as the average

distance of head moved in (x, y, z)

HeadvM: Overall variation in head movement quantified as
the distance of HeadM moved

PitchM: Head movement quantified as the distance changed
in the angle of pitch

PitchvM: Head movement variation quantified as the dis-
tance changed in PitchM

RollM: Head movement quantified as the distance changed
in the angle of roll

RollvM: Head movement variation quantified as the distance
changed in RollM

YawM: Head movement quantified as the distance changed
in the angle of yaw

YawvM: Head movement variation quantified as the distance
changed in YawM

Note that translation can be imagined as instantaneous veloc-
ity, features such as HeadvM can be conceptualized as the de-
gree of “irregularity” in the head movements. The above 15
features are computed per frame, and we take the median of
each of the features over an entire utterance as a single mea-
sure to be used for arousal scoring (see section 2.3.1).

2.3. Unsupervised Arousal Rating Score
The overall procedure in computing our proposed multimodal
arousal scoring for a given utterance is shown in Figure 2.
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Fig. 2. a) A work flow on computing arousal by fusin intra- (within) and inter- (cross) modalities. b) A depiction on the
evaluation setup of experiment I, II and experiment III, where experiment I, II assess the correlation of the framework with the
average human raters, and experiment III assesses the correlation between the framework and individual rater
2.3.1. Intra-modality Arousal Scoring
Within modality arousal scoring framework is largely based
on the methodology used by Bone et al. [13]. We compute
arousal score for each feature within individual modality by
first acquiring neutral samples to compute a baseline model,
Ni, for each feature type i (see section 2.2) for a given speaker
in the database. Then, for a feature type i in jth utterance, xij ,
we compute an unsupervised (rule-based) arousal scoring pij
as follows:

pij = 2× E[xij > Ni]− 1 (1)

where E[xij > Ni] is the percentage of neutral model (Ni)
for which xij is larger.

This creates a continuous-scaled arousal score bounded
between [-1, 1] for each individual feature, and a com-
bined arousal score within each modality, i.e., termed as
Avocal, Anonverbal, is computed by summing individual features
within each modality.
2.3.2. Inter-modality Arousal Scoring Fusion
In this work, instead of the common supervised fusion tech-
niques, we utilize three different unsupervised fusion meth-
ods to fuse Avocal, Anonverbal. The unsupervised techniques are
desired since the objective is to design a readily-applicable
arousal quantification framework.

The three techniques are inspired from literature in infor-
mation retrieval community, where different queries may re-
sult in different documents returned due to different scores
generated; hence an unsupervised technique in fusion all
likely returned documents is needed. The first two methods
are “score-based’ fusion techniques:

1. CombSUM: summation of arousal scores
2. CombMAX: taking the maximum of arousal scores

The third method is a method called reciprocal rank (e.g.,
[17, 18], which uses inverse of the ranking as scores that avoid

the problems of skimming effect and score normalization.
Since arousal scoring method itself is essentially a ranking-
based method, the method is a natural fit to perform unsu-
pervised fusion. The method is denoted as CombRR, where
we compute the final score, RR(i), by using the following
formula:

RR(i) =

2∑
k=1

1

Rk(i)
, (2)

where Rk(i) is the ranking of vocal and nonvocal arousal
score respectively.

3. EXPERIMENTAL SETUP AND RESULTS

We conduct the following three experiments:
• Experiment I: Analyses of non-verbal unsupervised

arousal scores with the average humans’ ratings
• Experiment II: Unsupervised fusion of Avocal and
Anonverbal for multimodal arousal rating

• Experiment III: Analyses of signal-based arousal rat-
ing with individual evaluator’s subjective judgment

The depiction of Experiment I, II and III is also shown in Fig-
ure 2 (right portion). The first experiment aims at understand-
ing whether there exists significant relationship between un-
supervised facial/head signal-derived arousal scores and hu-
man perceptual arousal rating. The second experiment’s goal
is to form a better improved arousal rating score than a vocal-
only arousal rating through multimodal fusion. Lastly, the
third experiment demonstrates that the proposed multimodal
arousal scoring has a higher agreement with each individual
evaluators’ agreement than the evaluators themselves. All
correlation values are done using Spearman correlation.
3.1. Experiment I & II results and discussions
Table 1 describes summary results from these two experi-
ments. First of all, while arousal has mostly been associ-
ated with behaviors in the vocal modality, we still observe
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Table 1. Summary of experiment I, II results (measured by Spearman correlation, all entries have p-value < 10−5

Type MOU LBRO RBRO LLID RLID LHD RHD HeadM HeadvM PitchM PitchvM RollM RollvM YawM YawvM Voice
Corr. 0.36 0.39 0.34 0.31 0.29 0.47 0.41 0.38 0.42 0.42 0.40 0.44 0.44 0.41 0.44 0.66

sum of all 15 non-verbal scores (AnonAll) sum of the 4 highest non-verbal arousal scores
Corr. 0.51 0.48

AnonAll fused w/ Avoice Aoptimized fused w/ Avoice

Fusion CombSUM CombMAX CombRR CombSUM CombMAX CombRR
Corr. 0.66 0.64 0.64 0.68 0.65 0.65

that the movement activities of head or face each correlates
well, i.e., in the range of 0.3 - 0.4, with the average human
labels of emotion activation (the first row of table 1 refers
to the arousal score generated by each individual non-verbal
feature using equation 1). Furthermore, a summation of all
15 individual features’ arousal rating results in a higher cor-
relation, i.e., 0.51, than any individual non-verbal behaviors;
it further depicts that the technical effectiveness of combining
all features within each modality to generate a robust within-
modality arousal score.

In order to construct a multimodal arousal rating system,
we fuse the two modalities using the three techniques de-
scribed in section 2.3.2. Results are presented in Table 1.
First thing to note is that a direct fusion of Avocal, Anonverbal,
where Anonverball includes scores from all 15 features, does
not show an improvement over vocal-only arousal score. The
vocal-only score alone is a very robust arousal indicator, and
the constitution of this vocal score relies only on three very
basic and robust features that overlap with much of the in-
formation presented in non-verbal channel. Hence, instead of
summation all 15 features from non-verbal scores, we con-
struct a Aoptimized, that consists of arousal scores only derived
from MOU, LBRO, LLID, LHD, HeadM, and RollvM fea-
tures. This constitution provides the best final resulting multi-
modal arousal rating framework (by using combSUM fusion
method). It achieves a 0.68 correlation - higher than the vo-
cal based arousal score. The result demonstrates that indeed
there is still complementary information about arousal states
in vocal and non-verbal communicative channels.

Lastly, since the best final unsupervised fusion frame-
work, i.e.,combSUM, is a summation framework, we further
conduct an experiment on learning the summation weight by
using linear regression. The weights for each modality for
one speaker are learned using the rest of nine speakers in the
database. This supervised fusion framework results in corre-
lation of 0.67, i.e., lower than the method of combSUM. This
experiment further reinforces that robustness achieved in our
proposed multimodal arousal rating framework is very com-
petitive and comparable.

3.2. Experiment III result and discussions
We set up experiment III to demonstrate that the use of signal-
derived quantification scheme is an viable approach to pro-
vide a more consistence and more objective way of mea-
suring arousal than judging by human evaluators. Instead

of usual approach where we compute correlation of the pro-
posed framework with respect to the average human evalua-
tor’s assessment, we compute correlations between our pro-
posed framework to individual evaluator for a given subset of
data samples in the database. The results are listed below:

Table 2. Summary of experiment III results
Evaluator 1 Evaluator 2 Avocal Amulti

Evaluator 1 1.0 0.44 0.48 0.53
Evaluator 2 0.44 1.0 0.64 0.64

We observe that given the same samples (in this case, 1930
samples), the agreement between evaluator 1 and evaluator 2
is 0.44. However, our proposed arousal rating (note: imag-
ing the framework is just as another evaluator since the rat-
ing is unsupervised with respect to these human evaluations)
correlates 0.53 and 0.64 to each evaluator, respectively; it is
a number that’s much higher comparing to the number be-
tween the two humans. This experimental result implicates
that there seems to be a higher variation in terms of human
subjective evaluations on emotion than the “machine’s signal-
based” evaluation. Furthermore, when comparing between
vocal arousal rating and multimodal arousal rating, it is inter-
esting to observe that within these two people, there is already
a discrepancy. Non-verbal behaviors provide additional infor-
mation for evaluator 1 in terms of assessing arousal state but
do not do so for evaluator 2.

4. CONCLUSIONS AND FUTURE WORK
In this work, we present an extension on unsupervised vo-
cal arousal by incorporating multimodal behavior features,
i.e., minimal set of descriptors involve movements in the face
and head. By utilizing six features only, we obtain an im-
proved correlation compared to vocal-based arousal rating us-
ing robust score summation. There are many threads of fu-
ture works, on the engineering side, the first is to extend this
framework to multi-corpora and implement the non-verbal
features in terms of computer vision techniques. Second, to
strengthen the results in experiment III, we plan to collect
a large number of evaluators using crowd-sourcing method-
ologies to systematically study the subjective phenomenon
of emotion evaluation. A computational framework that is
readily-applicable to use can not only provide quantitative
measure to the emotion of interest (arousal), but also could
provide novel insights that were not accessible without avail-
ability of a consistent and objective of behavioral computing.
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